
Optimizing Kernel Selection With Mixed Integer Nonlinear
Programming

Cameron Zawacki

Abstract— The kernel trick is a powerful and versatile tool
in machine learning applications. By utilizing the properties
of mathematical kernel functions, we can transform data into
different spaces where it can more easily be analyzed and
understood. To effectively utilize the kernel trick, experts hand
pick kernels a priori. The kernel’s hyper-parameters can then
be tuned using a grid search over a region of interest. In
this work, we model the kernel selection and hyper-parameter
tuning as a single mixed integer nonlinear dynamics problem.
As a result, we can eliminate the need for hand tuning the
inputs. The system is shown to correctly select appropriate
kernels in a handful of toy problems drawn from a combination
of constant, liner, nonlinear terms.

I. INTRODUCTION

While neural networks on large server racks can crunch
through billions of data points to train models, the method is
infeasible when access to data or computing power is limited.
Algorithms that utilize the kernel trick are more data efficient
and so make sense for compact, mobile applications such
as robots and mobile applications [2]. Kernel methods also
provide probabilistic outputs which correspond to a system’s
certainty or uncertainty about an answer. In some situations,
the resulting function can have a closed form solution and so
do not suffer from the same local sup-optimal convergence
problems that big data driven systems are prone to.

A. Kernel Functions

Positive definite kernel functions can be thought of as
similarity transformations. Instead of transforming the data
into a higher dimension to calculate the distance between two
vectors, the kernel function can be used to directly compare
vectors in the higher dimension without calculating the full
transform. The goal in raising the data into a higher space
is to allow it to be linearly separable.

Consider we want to separate the data shown in the left
graph in Figure 1 into two categories. On the 2D plane
the data is far from linearly separable and so any efficient
algorithms will fail. However, we can extend the data into a
third dimension as shown in the graph to the right using the
polynomial kernel,

k(x, y) = (xT y + c)d. (1)

Here we see that the data can easily be separated by a hyper-
plane in the higher space.

Mathematically, a positive definite kernel function k(·, ·)
is a symmetric function that satisfies,

n∑
i

n∑
j

cicjk(xi, xj) ≥ 0, xi,j ∈ X, ci,j ∈ N. (2)

Fig. 1. Left: A two dimensional scatter plot of 2 categories of data. Right:
The same data projected into a third dimension with the polynomial kernel
function, d = 2.

B. Kernel Regression

Aside from the classification example shown above, ker-
nels can be used to perform a regression on data. A common
technique to leverage the kernel trick for regression is the
Gaussian process. Unlike parametric models which fit the
parameters of a function to the given data, Gaussian pro-
cesses generate a distribution directly over functions. Given
a set of observations of an unknown function f = f(X), we
assume data is drawn from a normal distribution of functions
with some mean µ and covariance Σ,

f |X ∼ N (µ,Σ). (3)

Generally, the mean is taken to be the zero function to
prevent the system from diverging. The kernel function is
used to determine the general shape of the functions. We can
see in Figure 2 how the choice of kernel function effects the
pool of functions the system draws from. Because we have
a probability distribution, we can sample from it to produce
example functions. Each sub-graph in the figure shows three
sample functions.

By assuming the functions are drawn from a normal dis-
tribution, we can take advantage of conditional and marginal
distributions to extend the observations and make predictions.
Given a set of new points y we can update the prior
distribution p(f |X) by conditioning on the the set y to
generate a posterior distribution, p(f |X, y). Furthermore, we
can use the marginal distribution to make predictions f∗ on
hypothesized input data X∗,

p(f∗|X∗, X) =

∫
p(f∗|X∗, X)p(f |X)df. (4)

By the Gaussian assumption, the new distribution is also
Gaussian. Specifically it can be given by the joint distribu-

Fig. 2. Sample functions drawn from different kernels. Top Left: linear
kernel, Top Right: periodic kernel, Bottom Left: Gaussian kernel, and
Bottom Right: Quadratic kernel

tion, (
f
f∗

)
∼ N

(
0,

(
Σf Σ∗f
Σ∗f Σ∗∗

))
. (5)

The covariance matrices are given by plugging f and f∗

into a chosen kernel function.
k(f, f) = Σf

k(f, f∗) = Σ∗f

k(f∗, f∗) = Σ∗∗
(6)

C. Log-Likelihood

The extent of this work is in the kernel optimization step
of the learning process. To optimize the kernel we seek to
solve the following problem:

max
θ

p(f |X)

s.t. f |X ∼ N (0,Σ)
(7)

where θ is the set of hyper-parameters for a given kernel. In
other words, we seek the parameters that maximize the the
chance observing the data f(X).

One trick to simplify the calculation is to instead maximize
log p(f |X). Because the logarithm is a positive, increasing
function, the optimization is equivalent. The log-likelihood
function is given by

log p(f |X) = logN (0,Σf)

= −1

2
fTΣ−1f f − 1

2
log |Σf | −

N

2
log 2π.

(8)

As GAMs does not include built in methods for matrix
inversions or determinants, much work was put into working
around these limitations. The inversion of the covariance is a
simple enough with two linear systems where we can enforce
the following constraints on a separate variable, Σ̂−1f ,

Σf Σ̂−1f = I

Σ̂−1f Σf = I
(9)

To calculate the determinant we utilized the following rela-
tion,

|Σf | = |L|2, (10)

where L is the Cholesky decomposition of the covariance
matrix. The Cholesky decomposition is given by

Σ = LL∗, (11)

where L is a lower triangular matrix. This decomposition
only holds for positive definite Hermitian matrices. The
matricies formed by positive definite kernel functions are
symmetric by construction. However, in a misleading use
of nomenclature, positive definite kernel functions produce
positive semi-definite matrices. So long as we restrict the
types of kernel functions the results hold. In GAMs, the
implementation of the Cholesky decomposition requires two
equations to compute. First, we enforce the equality given
in equation 11. This requirement is simple enough with the
introduction of a variable matrix L. Second, we force the
matrix to be lower triangular. From these four constraints
we can obtain the determinant of the covariance matrix in
equation 10.

Unfortunately, the above decomposition suffers from sta-
bility issues in all but trivial cases. We can instead use a
predictive mean and variance derived from the Cholesky
decomposition to address this shortcoming. To do so, we
solve two systems of linear equations to derive the linear
predictor form of the inverse system,

x̂2 = LT \(L\f). (12)

The above equation can be expressed in the form of two
linear systems,

Lx̂1 = f, (13)

and
LT x̂2 = x̂1. (14)

The end result, x̂2, is a linear approximation of the inverse
calculation. The first term of equation 8 becomes x̂T2 f/2.

We can also simplify the second term in equation 8 into
the Cholesky form using log power and log multiplication
rules,

1

2
log(|L|2) = log(|L|)

= log(
∏
i

Lii)

=
∑
i

log(Lii)

(15)

where Lii represents the ith diagonal element of L. The
modified log-likelihood function is then given by,

log p(f |X) = −1

2
x̂T2 f −

∑
i

log(Lii)−
N

2
log 2π. (16)

D. Mixed Integer Nonlinear Program

We are now ready to formulate the kernel selection and
optimization problem as a mixed integer nonlinear program.
Let K be a set of kernels. Consider the following,

2

Lemma: The sum of two kernel functions is also a kernel
function.

Proof: Let k1 and k2 be two kernel functions defined
above in equation 1. By construction, k1 and k2 are sym-
metric, hence,

k1(x, y) + k2(x, y) = k1(y, x) + k2(y, x). (17)

Furthermore, the constant distribute over multiplication,
n∑
i

n∑
i

cicj(k1 + k2) =

n∑
i

n∑
i

cicjk1 + cicjk2. (18)

As a result, we can rearrange the terms to create,
n∑
i

n∑
i

cicjk1 +

n∑
i

n∑
i

cicjk2 ≥ 0. (19)

By construction each individual term in the summation is
non-negative and so the total sum is also non-negative. Thus,
k1 + k2 is a kernel function.

�
For ever kernel function Σi ∈ K create a binary variable

bi ∈ B. As a result let Σ∗ be defined as follows,

Σ∗θ =
∑
i

biΣi. (20)

Let θ represent the set of hyper-parameters associated with
each kernel function. The MINLP can then be written as the
maximization of the log likelihood term,

max
θ,B

logN (0,Σ∗θ)

s.t. Σ∗θ =
∑
i

biΣi
(21)

E. PILCO

In the field of reinforcement learning, the main algorithm
to utilize the Gaussian process is known as the Probabilistic
Inference for Learning COntrol (PILCO). The objective is
to use the probabilistic modeling capabilities of the GP to
model the transition function of an unknown system for use
in continuous control applications. The PILCO algorithm
has been shown to learn control policies with orders of
magnitude less data than comparable neural networks. As
the objective of this work is to select a kernel for such
applications PILCO’s mention here will remain brief.

II. ENVIRONMENT DATA

In many areas of machine learning toy environments have
been constructed to be able to observe how different algo-
rithms behave against specific scenarios. This provides a rich
landscape from which we can draw data. The team at Open
AI have released a public repository of a large selection of
reinforcement learning environments [1]. The two considered
here are the continuous pendulum and continuous mountain
car. Along side the more practical examples since kernel
regression is designed to work as a black-box function
approximate we can construct any number of mathematical
functions from which we can draw data.

A. Black-box Functions

As the objective of a regression system is to model an
unknown function, any constructed function can be used to
test the limits of such a system. A simple test can be fitting
to noisy linear trends. We can build upon this by adding
non-linearities such as a periodic or polynomial components.
From this we can determine the extent to which some kernels
generalize. Furthermore, we seek to minimize the number of
kernels a resulting model relies on. This is done by providing
the optimization problem a handful of kernel functions which
it can enable and disable as the optimization sees fit. We hope
to see the system remove unnecessary kernel functions from
the calculation to maintain efficiency.

B. Inverted Pendulum

The inverted pendulum is a classical control problem with
the objective of balancing a rotating rod at its unstable
equilibrium. An example of the environment is shown in
Figure 3 where the exerted torque is shown as an arrow.

Fig. 3. A snapshot of the continuous pendulum environment.

The dynamics are known making the problem a good test
to compare learning systems against optimal control models.
The state space takes the form of a 3-tuple consisting of the
cos and sin of the current angle, θ of the rod and the current
angular velocity of the rod, θ̇. In order to act on the system,
the agent can exert a bounded torque, τ at the pivot point. To
further constrain the search, the agent must also minimize the
energy expended to stabilize the rod. The objective function
is given by,

J(θ, θ̇, τ) = −(θ2 + 0.1b ˙theta
2

+ 0.001τ2). (22)

C. Continuous Mountain Car

Another common example that highlights different chal-
lenges can be seen in the continuous mountain car environ-
ment. Here the agent controls a small car located in a 2
dimensional valley as shown in Figure 4. The objective of
this system is to get the car up the hill to the right. Doing
so gets the agent a reward of 100, at all other time steps the
reward is -1. Unlike the inverted pendulum, the mountain car
environment has a sparse reward meaning an agent doesn’t
know how close to the objective it is from the reward alone.
The state space for this environment is a 2-tuple of the
current position and velocity of the car. The action space is a
bounded force exerted on the car, a negative value pushed the

3

Fig. 4. A snapshot of the continuous mountain car environment.

car left, positive to the right. To further increase the challenge
of the environment, the car cannot directly drive up the hill
to the right. The agent must learn a policy which first drives
up the hill to the left to gain enough momentum to make it
up the right hill. The sparsity of the reward function makes
this especially challenging.

III. ANALYSIS

Due to the student license equation limit. The number of
points that could be optimized over was greatly restricted.
As a result, the only functions that could be tested where
that of the black-box toy functions. To this end, the
system successfully optimized the mixed integer nonlinear
programs. The set K consisted of the following kernels:

Constant Kernel:

kconst(x, y) = α (23)

Linear Kernel:

klin(x, y) = β · xT y (24)

Quadratic Kernel:

kquad(x, y) = (γ · xT y)2 (25)

Gaussian Kernel:

kgaus(x, y) = σ2e−
1

2len2 (||x−y||2) (26)

Given K, we can define the set B = [b1, b2, b3, b4] where
bi ∈ {0, 1} is a binary variable. Because the above lemma
holds for any positive multiple of the kernel, we could
consider the liner combination of kernels instead of binary
variables. This, however, results in the need to calculate every
kernel even if the underlying data is not described well by
that particular kernel function. In order to avoid unnecessary
calculations we let the system ’turn off’ kernels with the
binary variables. The relative weights are then handled by the
kernel function’s hyper-parameters. The total kernel function
is given by the following formulation,

k∗ = b1 ∗ kconst + b2 ∗ klin
+b3 ∗ kquad + b4 ∗ kgaus + σfIn.

(27)

The kernel hyper-perameters are given by θ =
(α, β, γ, σ, l, σf). The last term, σf , represents an estimation

of the observation noise in the data. This term is included
as a parameter of the total kernel function.

The optimization was run on four sets of noisy data drawn
from a variety of underlying functions. The system then
maximized the log-likelihood function over the observations.

A. Linear Function

The first set of data was drawn from the following linear
function where N (0, σf) is a zero-mean noise term,

f(x) = 2x+ 10 +N (0, σf) (28)

The linear slope of 2 and constant offset of 10 where arbitrar-
ily chosen. As seen in Table I, the model correctly enabled
the linear and constant kernel functions while disabling the
quadratic and Gaussian kernels. Furthermore, it successfully
converges to the system parameters with an appropriate noise
estimation.

TABLE I
HYPER-PARAMETER OUTPUTS FOR DATA SET 1

Linear
b1 1
b2 1
b3 0
b4 0
α 10.405
β 1.972
γ X
len X
σ X
σf 0.432

Figure 5 shows the posterior mean calculated with the op-
timized parameters. The light blue area is the 95% confidence
region calculated from the covariance matrix.

Fig. 5. Ten data points drawn from equation 28 along side the output of
the optimization.

B. Quadratic Function

The second test introduced the first non-linearity in the
form of a quadratic term.

4

f(x) =
1

5
x2 + 3 +N (0, σf) (29)

The GAMs model was successfully able to pick out the
constant and quadratic terms while setting the binary variable
associated with the linear and Gaussian terms to zero. The
results of the second optimization are shown in Table II.

TABLE II
HYPER-PARAMETER OUTPUTS FOR DATA SET 2

Quadratic
b1 1
b2 0
b3 1
b4 0
α 3.205
β X
γ 0.199
len X
σ X
σf 0.434

Figure 6 once again summarizes the posterior mean with
it’s 95% confidence interval.

Fig. 6. Ten data points drawn from equation 29 along side the output of
the optimization

C. Polynomial Function

The third test ensured that the system would include all
relevant kernels as opposed to dropping the linear term in
favor of an incorrect quadratic slope.

f(x) =
1

10
x2 + 3x+ 8 +N (0, σf) (30)

The GAMs model was successfully able to pick out the
constant, linear and quadratic terms as shown by the bi terms
in Table III as well as determine the correct hyper-parameters
associated with each kernel.

Figure 7 shows the posterior mean with it’s 95% confi-
dence interval.

TABLE III
HYPER-PARAMETER OUTPUTS FOR DATA SET 3

Polynomial
b1 1
b2 1
b3 1
b4 0
α 8.381
β 2.937
γ 0.107
len X
σ X
σf 0.456

Fig. 7. Ten data points drawn from equation ?? along side the output of
the optimization

D. Larger Perturbations

Lastly, a larger, regular perturbation was introduced on
top of a linear trend. The system successfully enabled the
Gaussian kernel for this case instead of increasing the noise
range to accommodate the change in data.

f(x) = sin(x) +
1

2
x+N (0, σf) (31)

The GAMs model was successfully able to pick out the
linear and nonlinear terms as shown by the bi terms in
Table IV. Another observation is that, for reproduciblity, the
noise remained constant through all the trials. The model
accounted for this consistency with similar approximations
of σf for each trial.

Figure 8 shows the posterior mean with it’s 95% confi-
dence interval.

IV. CONCLUSION

A. Course Concepts

This work relied on an understanding of GAMs developed
throughout this course. Furthermore, the project leveraged
the the mixed integer nonlinear programs covered in the end
of the semester.

5

TABLE IV
HYPER-PARAMETER OUTPUTS FOR DATA SET 4

Linear + Sin
b1 0
b2 1
b3 0
b4 1
α X
β 0.486
γ X
len 1.536
σ 1.159
σf 0.511

Fig. 8. Ten data points drawn from equation 31 along side the output of
the optimization

B. Problems Encountered

While the project as a whole performed well, there are a
few caveats that limit the usability of the system. The first
is the aforementioned equation limit imposed by the student
license. This restriction limited the number of data points
the GAMs code would accept to under 15, well below the
hundreds required to run a full reinforcement learning agent.
The result is that the project serves as a proof of concept
over a handful of test functions.

A second issue is the system’s sensitivity to the objective
function and initial conditions. While the code converges
rapidly for some function f(x), it will go on to return an
infeasible result for f(x) + 1 and so on. Similarly, while
an initial value of α0 = 0 does not converge, a value of
α0 = 1 does. The sensitivity can be reduced by solving
the system as a relaxed mixed integer nonlinear program,
but this switch occasionally leaves some unnecessary kernel
functions active.

C. Future Work

Both issues can be easily addressed. First, if the license
is upgraded past the free version, the data limit will be
removed. To account for the sensitivity of initial conditions,
a sweep over these values can be implemented.

REFERENCES

[1] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[2] Robert Grande, Thomas Walsh, and Jonathan How. Sample efficient
reinforcement learning with gaussian processes. In Eric P. Xing and
Tony Jebara, editors, Proceedings of the 31st International Conference
on Machine Learning, volume 32 of Proceedings of Machine Learning
Research, pages 1332–1340, Bejing, China, 22–24 Jun 2014. PMLR.

6

	INTRODUCTION
	Kernel Functions
	Kernel Regression
	Log-Likelihood
	Mixed Integer Nonlinear Program
	PILCO

	ENVIRONMENT DATA
	Black-box Functions
	Inverted Pendulum
	Continuous Mountain Car

	ANALYSIS
	Linear Function
	Quadratic Function
	Polynomial Function
	Larger Perturbations

	CONCLUSION
	Course Concepts
	Problems Encountered
	Future Work

	References

