
Learning in Mobile Service Robots

He Chen, Varun Gupta, Seungwon Lee, Shashank Shivkumar
Monica Vyavahare, Christopher Zawacki, Hongrui Zheng

CIS700II - Integrated Intelligence for Robotics
University of Pennsylvania

Abstract

Intelligent service robots require the capability of learning
new knowledge from experience and exploiting the knowl-
edge to improve the way of completing the given task. To
achieve such capability, the learning focus group developed
database API for collecting training examples from experi-
ence, systems of learning the characteristics of environment,
especially spatial distribution of objects and temporal/spatial
distribution of people in corridors, and system of learning ac-
tions from demonstration.

INTRODUCTION
The learning group focuses on developing the functionality
of the robot to collect data, process data to learn the knowl-
edge, and provide new knowledge back to the user in a more
refined form. As this is the first learning focus group of
the course, the major goal of learning group in this semester
was to set foundation of work in learning by providing API
of database for collecting data and sample capabilities on
the basis of learning features. These sample abilities are
learning appropriate action from the given demonstration
and learning the pattern of the environment from the obser-
vation such as the distribution of objects. We expect that
API of database will be necessary part for the work of future
learning group and the sample capabilities will provide use-
ful functions for more complex tasks. This report describes
accomplishments of the learning group in this semester and
required amendments for the better usage.

Database API for Learning
One of Learning focus group’s achievements this semester
is the implementation of an interface between a MongoDB
database and ROS for future development for the learning
focus group. Learning new behavior from demonstration,
learning traffic patterns, etc. require collection of the data
from the sensors on-board the service robot prior to the ap-
plication of any learning algorithm. Therefore, a ROS pack-
age which subscribes to ROS topics and stores data in and
retrieves data from a database is necessary.

The database API has four core functionalities: 1) sub-
scribing to ROS topics and writing data into the database, 2)

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: rqt graph of node ros mongo server

Figure 2: rqt graph of node ros mongo retriever

retrieving data from the database and publishing to ROS top-
ics, 3) transferring data from a bag file to the database, and
4) transferring data from the database to a bag file. These
functionalities are wrapped by launch files.

ROS node ros mongo server(ros mongo server.py) sub-
scribes to four ROS topics(four at the moment and can be
expanded as needed) to record the data from sensors on the
service robots. The interaction between the node and the
topics are shown in Figure 1. In each of the topic callback
methods, the data is parsed according to MongoDB conven-
tions and inserted as id-ed post into the connected database.

ROS node ros mongo retriever(server to ros.py) regener-
ates ROS messages and publishes them to new topics ac-
cording to the query given. The node determines how the
MongoDB posts are parsed back into ROS messages based
on the tags of the post. The messages are published to ROS
topics created just for this node as shown in Figure 2 to avoid
conflict. These topics also come in handy when some of

Figure 3: IGMM clusters and objects on the space. Ac-
cording to the distance between newly observed object and
clusters (small circle), the object is included into an existing
cluster or makes new cluster for itself. This is demonstrated
for simulated dataset.

these data are needed, because other node can just subscribe
to these new topics. The number of topics can be easily ex-
panded to accommodate new sensor in the similar way of
modifying ROS node ros mongo server for new sensor.

The usage of the database API can be found in the
README on the repository. The database API is designed
for MongoDB. Since the map data server and all other
database-related code migrated to CouchDB, the database
API should also migrate to CouchDB.

Learning Distribution of Objects

The learning of the distribution of objects is an integrated
system providing information about where objects are lo-
cated at around the map. As the robot navigates around the
building, its vision system can detect objects. By combining
the vision data with the navigation’s localization and orien-
tation data, it is possible to approximate where the observed
object lies on the map (object localization).

Currently, we are using an incremental gaussian mixture
model (IGMM) (Engel and Heinen 2010) and some of the
code courtesy of the ESE 650 report on Semantic Map Lay-
ering by Alex Baucom, Sakthivel Sivaraman, and Sai Kr-
ishnan Chandrasekar. Ideally, each distinct object is repre-
sented as a cluster on the map of clusters. To add to the
terminology, a group of all the objects (clusters) in a floor is
called a layer.

Finding a cluster of object from observation is required
because the system should be able to associate different ob-
servations of the same object in the presence of noise and
the slight changes of the object’s position. This reasoning
is possible if the mean and covariance of accurate cluster is
learned from the observation.

The IGMM maintains a standard mixture model represen-

Figure 4: IGMM clusters visualized on the map using data
from the object detection and localization pipeline.

tation

p(x) =

M∑
j=1

p(x|j)p(j) (1)

where p(j) is the prior, or weight, of the jth cluster and
p(x|j) is the Gaussian probability that x belongs to cluster
j, which is defined as:

p(x|j) = 1

(2π)D/2
√
|Cj |

exp

(
−1

2
(x− µj)

TC−1
j (x− µj)

)
(2)

where D is the dimensionality of the data, and µj and Cj

are the mean and covariance matrix of the jth cluster respec-
tively.

Then a novelty criterion is defined as:

p(x|j) < τnov

(2π)D/2
√
|Cj |
∀j (3)

where τnov is a user defined fraction that determines how
novel a new data point must be to create a new cluster. If
the novelty criterion is met, a new cluster is created; oth-
erwise, an update step is performed. The full update step
and component creation equations are presented in Section
2 of (Pinto and Engel 2015), and Figure 3 shows location of
objects and their clusters.

A key feature to note of this algorithm is that, in addition
to maintaining the standard GMM values of µj , Cj , and
p(j) for all j, two other values vj and spj are maintained
and updated for each cluster. The value of vj keeps track
of how many updates have occurred since the cluster j was
created and the value of spj is a running sum of p(j|x). In
essence, vj measures how long the cluster has existed and
spj measures how important the cluster is. These values are

used for both updating the clusters during the update step
and pruning out clusters that are not important. A cluster is
pruned when vj > vmin and spj < spmin where vmin and
spmin are user defined values.

Building upon the IGMM for learning region-wise object
distributions, we tried to study and infer pairwise object re-
lations which we call object association. The idea is that if
the robot is looking for a marker pen, it may know that it can
find a marker in a conference room but may not be able to
see a small marker from a distance. But after associating ob-
jects the robot would know that the marker will be extremely
close to a writing board and this will help guide the search
process of the robot. Similarly, the robot would learn simple
things like chairs and tables go together, chairs and monitors
are often together, etc. Keeping these kinds of application in
mind, we decided to infer the following relations between
object.

• Which object is almost always next to another object?

• How likely is it to find object A near object B?

• How far apart are objects A and B if they are likely to be
in the same room?

To answer these questions, we first calculate the probabil-
ity of finding object cluster i in another objects cluster, say
object j using the expression below

p(xi|j) =
1

(2π)D/2
√
|Cj |

exp

(
−1

2
(xi − µj)

TC−1
j (xi − µj)

)
(4)

where all the conventions are similar to IGMM with the only
difference that xi here denotes the mean position of the ith
object cluster. Here we assume that the mean of the ob-
ject cluster is a good representative of its position in the real
world since the parameters in the IGMM have been tuned
accordingly. This probability is averaged up over all clus-
ters of object i and object j that are within a specified dis-
tance range, selected to be 5 meters in our implementation,
and weighted by an inverse exponential distance function.
This weighting ensures that objects that are relatively far
apart have their probability scaled down and make it eas-
ier to compare different pairs. The obtained probability is
a good measure of how likely an object can be found near
another object as has been observed from simulated experi-
ments.

To incorporate all these features, we provided a ROS
launch-able package with services using the information
contained within the IGMM layers. Figure 4 visualizes one
outcome of our package which shows location of detected
objects on the map via ROS rviz.

1. Simple lookup provides a way to retrieve the location of
an object given the name of that object. It can either return
the location this object exists at with the highest probabil-
ity, or return the closest object with that name to a given
point, depending on the search mode.

2. Object pair likelihood lookup takes two object names and
returns the probability of finding the two objects near each
other

3. Alternate object search takes an object name and returns
the name of a different object which is likely to be found
near the given object

4. Object location lookup returns all the locations of an ob-
ject, given the name of that object

5. NLP region recommender takes in a phrase such as
”drinking fountain” and returns the semantically closest
region which most closely associates with that phrase,
which may be, for instance, the area outside of a bath-
room right next to the label ”water fountain”. This in-
terface currently uses a word2vec model trained on the
Brown corpus to convert words into a semantic vector.

6. Count objects returns the count of all of the given objects
within a particular time frame and within a particular dis-
tance of a given location
In addition to these services, the package also provides 2

additional services that allow the object clusters to be stored
and retrieved. This allows the robot to retain knowledge
from past runs and use it for performing tasks better in the
future. To allow this, the package provides services that al-
low:

1. Update Data Manager with object cluster information:
This service writes the object cluster means onto the
database with 2 tags, namely objects and current times-
tamp, in order to uniquely identify these clusters and not
to confuse with the earlier stored clusters since the infor-
mation contained in the earlier clusters is carried with the
new set of clusters.

2. Initialize IGMM model with object clusters from
database: This service reads in all the clusters from the
database based on the appropriate tag, in our case, the
string objects and the latest time stamp, publishes it onto
a topic that is subscribed by the IGMM and initializes or
updates the model with this old knowledge in the form of
obejct clusters.

The object distribution model as well as the object asso-
ciation model could be further improved by:

1. Using batches of information for IGMM updates which
would make it invariant to the order of observation.

2. Using confidences from the object detection output.
3. Adding hierarchies to the objects in relevance to their fre-

quency of detection in an environment and the size of the
object itself. This would be more realizable in application
front.

4. Including the sizes of the objects in the likelihood estima-
tion model.

Learning Traffic Pattern
When traversing common foot traffic routes, the cost associ-
ated with a path is impacted by the number of people a robot
needs to navigate around. No matter how robust the naviga-
tion stack is, if a crowd can be avoided with minor increase
in the distance of path, the longer path should take priority
in terms of both safety of the navigation and traversal time.
Thus, a given hallway should have a cost associated to the

Figure 5: Expected crowd size at 1:00am (left) and 10:50am
(right)

estimated time of travel, not the distance only, to determine
the desirable path among alternatives. To achieve this, it be-
comes necessary to predict the number of obstacles which
an agent is expected to run into at a given time.

For this task, we choose to implement a Gaussian Process
Regression model on the basis of the python GPFlow library.
The goal of the current system is to learn the traffic distribu-
tion of people over a map throughout the course of a day.
The current system utilizes discretized space and time. The
output of the regression model is the expected number of
people in a given hall region at a given time of day. The cur-
rent system works on a single cyclical day; however, it could
be expanded to any number of days or a whole week. To
allow online and offline training of the model, the observa-
tions can asynchronously and randomly occur. The current
simulation assumes that an observation is made every few
minutes at a random location. This assumption would allow
multiple robots to periodically update the internal belief of
the system based on the most recent observations.

Due to the low demand for this capability, this work is
still a proof of concept and it is not wrapped as ROS pack-
age. Currently, the system loads a map as a binary array
where a wall corresponds to 1 and a hall as 0. Every n min-
utes a random sample representing the number of people is
observed as a function of location and time. This was set up
to reflect the rush of students before the hour a class starts.

As seen in Figure 5 the left image reflects a time with min-
imal energy. The image on the right however occurs 10min
before a class and so the top hall, made to reflect the main
hall of Towne, is much busier than the back hall.

The next steps for this work would be wrapping the model
in a ROS capable node to interface with the map server and
vision system. The model becomes slower as the space is
more finely discretized, so the way of storing and loading
pre-trained models is necessary.

Unfinished Components
Learning from Demonstration
Learning from demonstration is very useful in the case of
problems where it is difficult to mathematically formulate
desired behavior in terms of the robots state (or relevant fea-
tures extracted from it). There were a few possibilities that
we had discussed in terms of what a suitable goal for imple-
mentation would have been. Some of these were:

1. Manipulator control
(a) Grasping
(b) Pick and place
(c) Pushing a button
(d) End-to-end learning from images

2. Local navigation and obstacle avoidance (moving natu-
rally around dynamic obstacles).

3. User intention recognition.
Some of the major issues with pursuing this technique that

we anticipated were:
1. Most algorithms were created for discrete state and action

spaces which are not suited to solving these problems in
robotics which are usually high dimensional.

2. Reward structures are highly nonlinear: especially, ma-
nipulation tasks using simple features such as the arm
state.

3. Running multiple reinforcement learning episodes within
the inverse reinforcement learning loop would be imprac-
tical without the simulated system.
Additionally, it is still an open problem in inverse rein-

forcement learning to dynamically switch between complex
sequences of tasks which are useful for a practical scenario.
For instance, the possible subtasks of opening a door with a
manipulator are positioning near the door, grasping the han-
dle and turning the handle while pulling the door. It is diffi-
cult to both giving demonstrations of this sequence of tasks,
finding useful feature representations for learning, and deal-
ing with failure, so even algorithms of hierarchical learning
have been used over basic actions.

Besides aforementioned difficulties of inverse reinforce-
ment learning, we decided to begin with problem of nav-
igating through small environment with obstacles because
this problem has the least dependence on work of other fo-
cus groups like vision and manipulation which was incom-
plete at that time. Specifically, the problem that we aimed
to solve was to navigate to a fixed and known goal in the
presence of a single obstacle which can be either static or
dynamic. This setting of goal location can be extended to
the problem navigating longer distance in environment with
obstacles by selecting a single local way-point on the path
sequentially for the goal of this learned behavior.

We used feature set which consists of followings: radial
vectors pointing goal and obstacle and the angle between
them. For the algorithm of inverse reinforcement learning,
we focused on the learning from demonstration algorithm of
paper (Levine and Koltun 2012). This paper proposed the
approximation of maximum entropy (MaxEnt) loss function
which allowed the MaxEnt inverse reinforcement learning
to work with continuous state and action spaces. We chose
this algorithm because this method is also compatible with
other high dimensional robotics problems such as manipula-
tor control above.

Demonstrations were collected by teleoperating a robot
in the environment with a fixed goal and a static obstacle
but different starting locations. Control of the robot for giv-
ing demonstration was achieved by an Xbox 360 controller

and the existing turtlebot package for Xbox controller in-
puts. The reason why Xbox 360 controller was used instead
of keyboard is that keyboard teleoperation of the turtlebot
responds only to a single keypress at a time which makes
demonstration more choppy and imprecise.

We attempted to use an available MATLAB implementa-
tion for the method in paper (Levine and Koltun 2012). This
was not completed since it was not an immediate require-
ment of other focus group and team; however, ROS-based
controller for navigating the robot according to the given
specific policy and feature was implemented and it is now
in master branch of github repository. Some future steps
that we envision to achieve would be:

1. Creating a dedicated simulator for learning from demon-
stration.

2. Finding a compatible C++/Python implementation which
can be used directly or using Matlab-ROS plugin to use
existing implementation of the learning algorithm.

3. Using raw LIDAR readings as features to a nonlinear re-
ward learning algorithm (possibly using Gaussian pro-
cesses or deep learning). This would be able to generalize
better to new environments and incorporate features from
vision and depth sensing.

Open Issues
In this semester, our efforts were directed toward develop-
ing basic functionality in navigation, vision and manipula-
tion. It was difficult to simultaneously implement learning
algorithms that utilized these core operations. Developing
learning algorithms in upcoming semesters will be easier be-
cause the core functionality of the service robots are close to
fully-developed. There are several open issues which can be
starting points for upcoming semesters.

1. The data collecting API needs to be migrated to
CouchDB.

2. The NLP region recommender currently uses a locally
hosted, self trained word2vec model on the brown corpus.
However, this is not reliable. Instead, we should use the
Google word2vec model (3.5+ gigabytes file size), host it
on a server, and make it available as a service.

3. Currently, the layer server in object distribution only
works with one region ID, meaning one region of the map.
It would be nice if the layer server additionally keeps a
dictionary for each region ID that maps to the actual layer
for that region ID. Additionally, all of the observed loca-
tions in object localization only writes to a single topic for
all of the region IDs. This is more of a vision change, but
it should write to a different topic depending on the region
ID, so that we can update different models pertaining to
different regions.

References
Engel, P. M., and Heinen, M. R. 2010. Incremental Learn-
ing of Multivariate Gaussian Mixture Models. Berlin, Hei-
delberg: Springer Berlin Heidelberg. 82–91.

Levine, S., and Koltun, V. 2012. Continuous inverse opti-
mal control with locally optimal examples. arXiv preprint
arXiv:1206.4617.
Pinto, R. C., and Engel, P. M. 2015. A fast incremental
gaussian mixture model. In PloS one.

