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Abstract— Gait synthesis and optimization is a key challenge
in the field of legged robotics. The performance of the system
often relies heavily on the parameters that define a gait.
Increasing the number of parameters allows a gait to be
more finely tuned but in turn increases the difficulty of the
gait parameter optimization problem due to the curse of
dimensionality. The dependence on a physical machine makes
it costly to measure the performance of a given gait, and
inconsistencies in the model such as motor heating and battery
placement make the optimization process susceptible to noise. In
this paper we demonstrate a new method for tuning parameters
based on formulating the gait optimization problem as a multi-
armed bandit problem. The method is designed to account for
uncertainty resulting from measurement noise while requiring
a low number of physical trials. We tested this method on
QRHex, a quadrupedal, RHex-style robot with one actuator
per limb. With this method we were able to decrease the cost
of transport by 36.6%.

I. INTRODUCTION

Finding a gait for a legged robot is a challenging task even
for an expert with extensive experience. Generally, the tuning
process is reduced to a parameter optimization problem by
adopting a parametric representation of admissible gaits. For
RHex-style robots with one actuator per limb, a common
approach to this reduction is to use a Buehler clock [20]. An
expert can roughly tune the values of each gait parameter for
a given situation using intuition, but the finer details are reg-
ularly tuned through exhaustive testing. One could quantify
the relevant aspects of gait quality through an understanding
of the physical system, thereby formulating a function that
encodes the desirability of a gait. While this method produces
an optimization problem that can be systematically solved,
the resulting gait space increases exponentially in size with
the number of gait parameters. This causes difficulty for
humans and algorithms alike as it gives rise to the curse of
dimensionality, limiting the number of gait parameters and
the granularity with which they can be studied.

Solving the optimization problem requires measuring the
robot’s performance for different values of the gait param-
eters, which can be done either on the physical robot or
in simulation. For RHex-style robots with compliant legs,
accurate simulations can be difficult to obtain due to the
difficulty of modeling the leg mechanics. This means, at
best, we can achieve a crude estimate of the cost function
through simulation, so some learning trials must be run on
the physical machine, which is a time-consuming process
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that introduces noise into the system. Despite the difficulty
of the optimization problem, it is highly structured as the
input space consists of a finite number of parameters mapped
to a cost representing the relative desirability of a gait.

Previous have considered machine learning methods for
gait optimization. For RHex-style robots, the most rele-
vant prior work is that of Weingarten et al. [21], which
used the Nelder-Mead algorithm to optimize an alternating-
hexapod tripod gait encoded by Buehler clocks with several
parameters. Nelder-Mead was chosen primarily for its low
experimental cost per step compared to other “direct search”
methods [21]. With its hexapedal design, RHex was able to
carry its center of mass above its support polygon when in
the stance phase, resulting in relatively stable dynamics with
consequently low trial-to-trial variation in the observed gait
costs. We study a quadrupedal RHex-style robot, QRHex,
and opted to tune a bounding gait with a 50% offset between
the front and back leg phases. This subset of the gait space
was selected to see if a natural aerial phase would arise
from any of the algorithms. The quadrupedal morphology
is intrinsically less stable than a hexapod, which makes it
more difficult to obtain good gait-quality measurements.

Other studies in the literature have focused primarily on
quadrupedal robots with significantly greater numbers of
degrees of freedom per leg, which complicates the gait
synthesis problem. In [15], Lewis and Bekey tuned the
parameters of Central Pattern Generators to actively adapt
the gait of a quadruped robot. They focused on developing a
basic gait structure where one was not previously known.
Kohl and Stone, [13], tuned a trot on Aibo robots and
compared various strategies for optimization. They found
that their policy gradient algorithm was able to outperform
multiple other approaches including a genetic algorithm and
Nelder-Mead style amoeba algorithm. Chernova and Veloso
also used Aibo robots to successfully test a genetic algorithm
[7]. For speeds greater than 0.240 m/s they measured gait
properties by taking the average of two tests to minimize
measurement noise. QRHex’s dynamics are sufficiently en-
ergetic such that measurements of gait quality are corrupted
by significant noise. Therefore, it is important to optimize
QRHex gaits with algorithms that account for the stochastic
nature of the measurements and that seek global optima.

Along these lines, Lizotte et al. [16] compared several
different stochastic-aware techniques on Aibo robots, pri-
marily based on Gaussian process regression to model the
cost function. They showed significant improvement over hill
climbing algorithms, but required a prior over the Gaussian
process, which they obtained from an expert who had spent
significant time hand-tuning Aibo robots. We did not have



such an expert due to the novel nature of QRHex, and so a
simple simulation was constructed to model the robot. Cully
et al. [8] used a method based on the Upper Confidence
Bound (UCB) algorithm from the stochastic optimization
literature to train a robot to adapt its gait in response to
damage, such as mechanical failures [5].

The work presented in this paper is motivated by the
following technological goal. RHex-style robots with the
Buehler clock control strategy have proven capable of robust
locomotion over diverse types of terrain, but the performance
of a given set of gait parameters varies significantly as
the environment is changed (e.g., grass to concrete) [22].
Therefore, for long-term autonomous operation in varied
environments, one would want the robot to autonomously
tune its gait. As noted above, previous work on automated
gait tuning for RHex robots has relied on the Nelder-Mead al-
gorithm, which is known to be sensitive to initial conditions.
Therefore, it is preferable to use an optimization algorithm
with stronger guarantees of convergence, such as the Upper
Credible Limit (UCL) algorithm [19] from the reinforcement
learning literature. Furthermore, the standard metric for gait
performance, specific resistance, requires specialized hard-
ware to measure. In order to construct inexpensive robots
that can automatically tune their gaits, we require a cost
function that is more readily measured.

Working towards this goal, contributions of this paper are
three-fold. First we introduce QRHex, a new morphology
of a RHex-style machine. Second, we develop a proxy of
specific resistance that was readily computed using data from
standard sensors. Lastly, we apply a variety of optimization
techniques to the QRHex gait optimization problem and
show that learning techniques that explicitly account for the
stochastic nature of the problem can outperform the methods
that had previously been used in the RHex literature. In
particular, we implement a version of the UCL algorithm
from the reinforcement learning literature and show that this
algorithm achieves a 36.6% reduction in specific resistance
relative to an simulation-estimated initial gait. For this initial
work we restricted ourselves to a region of parameter space
that encodes bounding gaits. We anticipate that the approach
used here will extend naturally to the overall parameter
space.

The remainder of the paper is organized as follows:
Section II introduces the design characteristics of our new
robot. Section III lays out the real and virtual experimental
setups. Section IV defines the new cost function, and Section
V describes the optimization algorithms compared. Section
VI presents the results and the performance improvements
obtained in the physical trials performed with QRHex. Sec-
tions VII and VIII suggest future directions for this gait
optimization work and what more we might achieve with
the QRHex platform.

II. QRHEX

QRHex, shown in Figure 1, is a power- and computation-
autonomous quadrupedal robot. It is a quadrupedal RHex-

style, [20], robot with one actuator per hip powering com-
pliant C-shaped legs.

Fig. 1. QRHex

A. Mechanical Design

QRHex’s four legged design was influenced by the scaling
arguments developed in [11]. These imply that specific force
for a fixed mass budget scales as n−1, where n is the
number of actuators. This suggests that, for a RHex-style
direct drive robot, a quadruped can be more torque efficient
than a hexapod. See Table I for detailed specifications.

TABLE I
DIMENSIONS

Leg to Leg Width 25 cm
Body Width 15 cm
Hip to Hip Length 36 cm
Body Height 10 cm
Hip Height 5 cm
Motor Module Mass 0.4 kg
Battery Mass 1.0 kg
Total Mass (with battery) 4.225 kg

B. Direct Drive

QRHex was built using RHex's compliant, C-shaped,
fiberglass legs and the direct-drive infrastructure described
in [11]. Each leg is individually actuated by a T-Motor U8
[2], whose position is controlled using the closed loop in-
frastructure described in [11]. The direct-drive infrastructure
allows QRHex to be lighter, more robust to impacts, and
mechanically more efficient due the absence of gear related
friction [11].

C. Parameter Space

The desired joint angle for a given leg is determined by a
Buehler clock [20], depicted in Figure 2. Each leg trajectory
is composed of a slow stance phase and fast re-circulation
phase of rotation. Within a cycle, the length of the slow
section is defined by δ ∈ [0,1]. This slow section begins at an
offset angle φ0 ∈ [0, 2π] and sweeps for φs ∈ [0, 2π] radians.
Each leg l can be at a shifted phase in the cycle relative to
a base leg; this is defined by ψd,l ∈ [0, 2π] in Figure 2. The
frequency at which the leg rotates about the hip is denoted
ω ∈ R+. For the work presented here, the angular frequency
ω was held constant and the phases ψd,l locked in a bound
such that the front two legs were π radians offset from the
back. We denote the remaining set of parameters by θ ∈
B ⊂ R5. We denote the ith parameter by θi and the upper
and lower bounds on its value by θi and θi, respectively. The



leg joint angle is driven to follow the Buehler clock nominal
trajectory using a PID control; the PID control gains were
tuned separately and held fixed throughout the work reported
here.

Fig. 2. Buehler Clock [20] with example offset

III. EXPERIMENTAL SETUP

This work required that trials be run on both on a physical
machine and on a simulated construction of that machine.

A. Vicon

During a given trial we used a Vicon camera setup in an 8
by 20 meter corridor to collect the ground truth position and
orientation of QRHex [4]. The system operated at an update
frequency of 100Hz and published data to a ROS node for
later analysis [1]. Each trial consisted of running the robot
for 30 seconds on a given gait. Through empirical testing
we determined that an expert operator could significantly
narrow down the gait space to an admissible subset from 30
randomized gait trials. Thus we aimed to develop learning
algorithms that could identify a good gait in 30 trials or
fewer.

B. Simulation

Because trials are costly in time and wear out the robot,
a simulation was designed to estimate gait costs. Due to the
complexity of the system a high fidelity model is challenging
to create. For example, compliant C-shaped legs are notori-
ously difficult to model [6], motor performance changes as
the actuators heat up, and slight adjustments to the battery
position alter the natural frequency of the robot’s pitching
dynamics. Because of this, a crude representation of the robot
was constructed in the Unity physics engine [3] by defining
the leg to be a rigid body constrained to parasagittal planes
on either side of the robot. Each leg experiences a restoring
force in the plane from a spring with rest length zero (See
the supplementary video). Let γ ∈ R4 denote the simulation
parameters: spring stiffness, joint damping, maximum joint
force, and leg mass. To calibrate the values of γ, a small set
of randomized trials, denoted Θ, was used to minimize the
difference between the robot and the simulation. Let C(θ)
define an arbitrary cost function (the specific cost function

used will be defined in the following section). First the set
of gaits, Θ, was run on the physical machine and the costs
recorded. Then the same gaits were run on the simulation
over a brute force selection of simulation parameters. The
value of γ was determined using the least squares method.

γ∗ = min
γ

∑
θ∈Θ

(Csim(θ)− Cphys(θ))2. (1)

IV. COST FUNCTION

The standard cost function used in the RHex literature
is the cost of transport, measured by specific resistance or
speed-weighted specific resistance [21], [9]. However, mea-
suring specific resistance requires specialized hardware in
order to get accurate measurements of the energy consumed
by a given gait. This hardware is costly and was not readily
available as part of the QRHex electronics infrastructure,
so we sought to determine a new definition of a “good”
gait, i.e., a proxy for specific resistance. The form of this
new cost function rewards periodic motion while seeking
gaits inherently robust to noise. Even when it is available,
the energy measurement hardware is expensive, so the new
definition is likely to be useful for applying online gait
learning techniques to other low-cost legged robots.

The specific resistance data we provide was calculated
using the energy discharged from the battery averaged over
long trials and so the cost per trial is an order of magnitude
greater than our new cost function. Because of these high
costs per trial, it is infeasible to use this measurement
technique for the learning process and so we use it only
to validate the efficiency of the learned gaits.

As defined above in Section II-C, let θ be the set of
variable parameters that determine a gait. We have set θ to be
the duty cycle, sweep, and offset of a Buehler clock (other
Buehler clock parameters are held constant). Let ω be the
driving frequency of the gait.

Let z(t; θ) be the height of the vehicle relative to the
ground as a function of time t for a trial with a given
parameter value θ. We will consider the frequency content
of the signal z, which we expect to be concentrated around
harmonics of the driving frequency ω. Through extensive
use of this machine we have noticed gaits that we deem
“good” excite multiples of the driving frequency as seen in
Figure 3. Furthermore, gaits that exhibited these harmonic
structures tended to have lower specific resistances. It should
be noted that the lack of this structure gave no indication as
to the efficacy of the gait. This leads us to believe that our
cost function is a suitable proxy for a subset of the specific
resistance. We quantify this notion of “goodness” using the
Fourier transform of z. Let Z(k; θ) be the Fast Fourier
Transform (FFT) of the discretely-sampled time series z(t, θ)
and let f be a small frequency window strictly less than the
driving frequency ω.

We define the function S(θ) as a measure of how much
structure is present in the FFT in hopes that this demon-
strates that the algorithm is learning and utilizing the natural
mechanics of the robot. Let N be the number of harmonics
considered. We have seen through experimentation that at



Fig. 3. The driving frequency of this gait is 3.4Hz. An additional four
higher harmonics can be seen excited in this example.

higher frequencies the amplitude of a peak in the FFT de-
creases to the point where it becomes indistinguishable from
noise and so, only a few harmonics need to be considered.
We have set N = 10. Let S(θ) be defined as follows:

S(θ) =

N∑
n=1

max[nω−f,nω+f ](Z[k, θ])

mean[nω−f,nω+f ](Z[k, θ])
, (2)

where the subscripts define the intervals over which the
means and maxima are computed. The function S compares
the peak values of the FFT against the means of a small
interval situated around the first N harmonics. The better
defined the peak around a given harmonic, the larger its
contribution to the function value. Note that the function S
is real-valued and positive.

Let µθ be define as the average ground speed for a given
set of gait parameters. Let α ∈ [0, 1] be a tuning constant
that trades off between speed and harmonic structure. The
total reward function R(θ) is defined as follows:

R(θ) = (1− α)µθ + αH(θ) (3)

Minimizing a cost C(θ) is equivalent to maximizing the
reward R(θ). We can define the cost C(θ) of a gait as the
negative of the reward, as we prefer to follow the convention
in the optimization literature of minimizing costs.

C(θ) = −R(θ) (4)

In this work we measure z using the Vicon system, but
we hypothesize that Z could be effectively estimated using
an accelerometer on board the robot.

V. ALGORITHMS

We compared the performance of three different optimiza-
tion algorithms: Nelder-Mead, Simulated Annealing, and the
Upper Credible Limit (UCL) algorithm from the multi-armed
bandit literature. UCL is a Bayesian algorithm that can use
informative priors to improve its convergence rate. We used
data from simulated experiments to develop priors for UCL.
These priors also provided the initial conditions for the
Nelder-Mead and Simulated Annealing trials.

1) Nelder-Mead: In the past, Nelder-Mead has been used
for gait optimization on RHex-like machines, see [21].
Nelder-Mead is a local optimization algorithm that is often
effective despite the fact that it can fail to converge to local
optima [14]. Because it is a local algorithm, the results
of employing Nelder-Mead depend strongly on the initial
conditions. Nelder-Mead was tested twice utilizing the gaits
with lowest cost found by the simulation as initial conditions.

2) Simulated Annealing: Because Nelder-Mead is a local
optimization technique we also tested a global optimization
algorithm, namely, Simulated Annealing [12]. See Algorithm
1 for the pseudocode of the algorithm we implemented.
Similarly, the initial gait was selected from the simulation
results. Recall that θ is the set of gait parameters. We define
the current best set of parameters and the respective cost
as θold and costold. The next gait to test and its cost are
then denoted by θnew and costnew. We define T to be the
current temperature of the system, Tmin to be the stopping
condition, and α to be the rate of cooling. We declared
Tmin = 0.05 and α = 0.87 for our trials. We define ap
to be the acceptance probability, the chance we switch to
a lower cost gait.

Algorithm 1: Simulated Annealing

1 T ← 1.0
2 for i ∈ [1, n] do
3 ε ∈ rand[0, 1]

4 θoldi ← ε(θi − θi) + θi

5 costold ← C(θold)
6 while T > Tmin do
7 j ∈ randInt([1, n])
8 ε ∈ rand[0, 1]
9 θnew ← θold

10 θnewj
← ε(θi − θi) + θi

11 costnew ← C(θnew)

12 ap← e
costold−costnew

T

13 ε ∈ rand[0, 1]
14 if ε > ap then
15 θold ← θnew
16 costold ← costnew

17 T ← αT

18 return θold

3) UCL Gaussian Process: As noted in the introduc-
tion, empirical measurements of gait quality on QRHex
are corrupted by significant noise. Therefore, we tested an
implementation of the UCL algorithms developed in [19],
[18]. These algorithms perform Bayesian optimization on
discrete spaces and admit performance guarantees that show
that they converge to the global optimum at a maximal rate.

As a Bayesian algorithm, the performance of UCL can
be strongly affected by the choice of priors. Furthermore,
standard UCL operates on a discrete space, while the gait
parameter space B is continuous. Therefore, two challenges
that had to be addressed in implementing UCL for our system



were the discretization of the parameter space and generating
priors over the cost C. For this initial work we discretized
the space B using a uniform rectangular grid and adjusted
the granularity of the discretization for each parameter to
find a reasonable compromise between grid resolution and
the number of grid points. It should be noted that Nelder-
Mead and Simulated Annealing were implemented in their
standard forms, operating on the continuous domain B.

As noted above, we developed priors over this discrete
space using simulation data. All three algorithms used these
priors to seed their initial conditions. A key feature of the
cost function is that it appears to be continuous, so it is
natural to use kernels to represent the dependencies among
the function values at different points. We used the Python
module GPFlow [17], which implements many different
standard kernels, to implement the priors and perform the
Bayesian updates. Through experimentation, we found that
the Matérn 5/2 kernel resulted in the best performance,
likely because it models a reasonable amount of smoothness
in the cost function. See Algorithm 2 for details of the
implementation of UCL we used in this work.

Algorithm 2: UCL Gaussian Process

1 trial count ← 0
2 % Load simulation data
3 populatePriors()
4 kernel = Matérn 5/2
5 % Fit model (kernel parameters)
6 fitModelParameters()
7 while trial count < 20 do
8 % Use the UCL heuristic to pick θ
9 θ ← pickNextPoint()

10 % Get a function measurement
11 R(θ) ← run(θ)
12 % Update the internal belief state
13 updateState(θ, R(θ))
14 % Update the model using Bayesian inference
15 inferenceUpdate(θ, R(θ))
16 trial count ← trial count + 1

VI. RESULTS

We present data from several series of learning trials
performed on the physical robot and show that, while each
optimization algorithm achieved some improvement in the
gait, the UCL algorithm achieved greater and more consistent
gains.

A. Regret

We present the results of the learning process in terms
of regret [19], which is commonly used in the multi-armed
bandit literature to measure performance. The regret of a
choice is a measure of how much more costly that choice is
compared to the best choice that could have been made. To
measure regret in an empirical setting one must choose an
estimate of the best possible choice, which sets the reference

value for measuring regret. Because each gait has a deviation
in costs associated with it, it is possible that a gait with high
average cost could achieve the absolute minimum cost during
any given trial. This, however, will not yield an optimal
solution over many trials and so we defined the regret from
the minimum average cost, C. Let θ∗ be the parameter set
that yields the lowest average cost. Thus regret from trial t
is defined as:

R̂t = C(θ∗)− C(θt), (5)

and the cumulative regret at time T is the sum
∑T
t=1 R̂t.

Lower cumulative regret corresponds to faster convergence.
From this definition the cumulative regret can decrease but
a solution that approaches the optimal gait will still tend to
zero slope.

The data presented in Figure 4 shows the total cumulative
regret over the course of learning epochs, two epochs for
each algorithm studied. Each epoch consisted of only 20
trials as 10 trials were used to calibrate the simulation and it
had been determined an expert operator could narrow down
the gait space in 30 randomized trials. Trials are scarce as
running the physical machine is time intensive.

Fig. 4. Cumulative Regret of the three different algorithms considered.
Each UCL epoch results in less regret than an epoch with either of the
other two algorithms.

Figure 4 shows both UCL epochs determine the optimal
solution in approximately ten trials. Both epochs converged
on the same solution further showing the robustness of
the algorithm to uncertainty from measurement noise. The
Simulated Annealing epochs have close to constant slopes,
indicating roughly constant regret R̂t. This result could
be ascribed to the rapid cooling required to converge the
annealing algorithm within the trial limit. While Simulated
Annealing has nice global properties it seems ill suited for
this particular physical machine where the cost of performing
a trial is high. When Nelder-Mead was initialized using
the top four gaits provided by the simulation the algorithm
converged on a suboptimal local optimum which can be
seen as the result with the highest regret in Figure 4. The
second Nelder-Mead epoch started with the next four best
gaits which included the set of parameters the UCL algorithm



converged to. With these initial conditions Nelder-Mead was
able to converge on a near-optimum solution. However, even
when initially provided with an optimal gait, the convergence
is slower than both UCL trials.

B. Gait Frequency Content

The effect of our cost function can be best seen by
comparing the FFT plots in Figure 5 which shows the
optimal gait found by UCL and the local optimum found
in the first Nelder-Mead epoch. The “good” gait has its
frequency content much more cleanly concentrated around
the harmonics of the driving frequency. The “good” example
is the same data as seen in Figure 3 but is repeated for ease
of comparison. The physical differences between the gaits
can be better perceived in the supplementary videos.

Fig. 5. Good: the optimal gait found by UCL. Bad: the suboptimal gait
converged on by Nelder-Mead in epoch 1

C. Specific Resistance

While not directly learning over specific resistance, the
minimization of our cost function resulted in a 36.6%
decrease in the standard cost of transport as seen in Ta-
ble II. The second Simulated Annealing epoch, while not
performing well on our cost function, resulted in a specific
resistance close to that of the UCL algorithm. This provides
an example for the observation made in Section IV that the
lack of structure in the FFT does not provide information on
the efficacy of a gait.

TABLE II
SPECIFIC RESISTANCE

Algorithm Epoch Starting SR Ending SR % Change
UCL 1 5.25 3.33 -36.6%
UCL 2 5.25 3.33 -36.6%
SA 1 5.25 3.72 -29.1%
SA 2 5.35 3.42 -36.2%
NM 1 5.25 4.19 -20%
NM 2 3.33 3.80 +9.0%

VII. DISCUSSION

The work presented here leaves open many avenues of
future research. We focused on the learning aspect of this
problem but this revealed some interesting mechanical as-
pects of the system which warrant further investigation.

Another interesting direction would be to investigate the use
of a physics engine to construct a crude model of the robot
and how much information about the physical robot can be
gleamed from these simulations.

A. Buehler Clock

We selected a Buehler clock as the parametric repre-
sentation of the gait space because it is the representation
that is most commonly used in the literature on RHex-type
robots. The gaits implemented using the Buehler clock tend
to be such that the slow section of the gait occurs during
contact with the ground followed by a fast recirculation.
However the optimal solution found by the UCL algorithm
operates differently: it rotated the slow section well out of
ground contact. We believe that, because the space was
discretized relatively coarsely, the size of the slow section
was used in concert with the duty cycle to adjust the impact
velocity between the legs and the ground during the fast
phase. Further research can be done by looking into whether
replacing control over the duty cycle and sweep size with
direct leg recirculation speeds yields similar results on this
particular machine.

An additional behavior of the optimal gait is a slight
impacting of the tail end of the robot with each step. Some
of the gaits tested did not exhibit this behavior and so it
was specifically selected. This feature appears critical to the
performance; if the base plate of the robot is shortened by an
inch the gait looses its stability, see the supplemental video.
One potential theory is that this is an artifact arising from
the relative impact locations of the front and back legs in
relation to the center of mass, similar to the toe stubbing
for pitch correction when jumping with RHex [10]. This
question warrants further investigation.

B. Simulation Fidelity and Mechanical Sensitivity

Further research can be done on the tactic of using a
crude simulation to generate prior data. While accurate sim-
ulations are desirable, the calibration process is susceptible
to inconsistencies in the mechanical properties of the robot
from trial to trial. For instance, we found that the cost
of gaits would change dramatically if the battery position
was adjusted by as little as a centimeter. This is likely due
to the fact that the battery makes up a large percentage
of the robot’s weight, about 24%, and so by shifting the
center of mass slightly, one adjusts the natural frequency
of the robot’s pitching dynamics. This suggests another
optimization problem between the cost of simulation trials
versus the cost of physical trials. For instance, the rate of
convergence could be explored as a function of the number
of trials used to calibrate the computer model.

C. Trial Length

Another area of investigation would be in testing the
relationship between the cost function we defined and the
trial length. Longer trials may decrease the impact noise
introduced by the legs snapping into position at t = 0
has on the overall cost of a gait. Thus trials with more



clock cycles could reveal efficient gaits that take longer
to converge. However, this means that shorter trials could
produce slightly less efficient gaits that are more robust to
the initial conditions of the legs and quickly fall into a steady
state.

VIII. CONCLUSIONS

In this paper we compared methods of gait optimization on
a RHex-like machine and showed that stochastic algorithms
should be considered to account for uncertainties in real-
world data. While bandit-style algorithms have been used
for gait adaptation on other morphologies, this paper is the
first to use the UCL algorithm and the first to do so with
the RHex-style morphology consisting of a single actuator
per hip with compliant C-shaped legs. We also provided a
proxy to specific resistance which we hope to use to explore
online learning with cheap legged systems. Looking forward,
this work aims to develop rigorous and efficient methods for
inexpensive legged robots to actively adapt their gaits to their
environment.
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